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Abstract: This work presents some considerations regarding mathematical models and 
control solutions for a class of mobile robots currently namely two-wheel differential 
drive mobile robots. Now, this configuration is one of the most utilized mechanical 
structures in wheeled mobile robotics practice. The closed loop control diagrams for 
position control and respectively for direction control in tracking along imposed 
trajectories are also analyzed and included in this paper. For these control solutions and 
based on root locus method diagram, the paper presents therefore some analyses 
regarding the stability in different circumstances.  
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1.  INTRODUCTION 
 
Usually, the mechanical mobile robot solution 
namely "two-wheel differential drive mobile robot" 
has three wheels minimum. Two "drive wheels" have 
a common horizontal axis which is fixed (regarding 
its body) during robot operation. By their angular 
velocities, these "drive wheels" assure the mobility 
of the mobile robot. One or more free wheels 
(namely "castor" wheels) assure the robot 
equilibrium (Nitulescu, 2002). Therefore, while three 
wheels introduce isostatic equilibrium for robot 
body, more that three wheels introduce hyperstatic 
equilibrium, which ensure a better stability on 
complex trajectories, including curve segments 
(Bicchi, et al., 1995). Each castor wheel is mounted 
independently on a vertical not driven axis of the 
mobile robot body. In consequence, a castor wheel is 
automatically and free aligned on the route as a result 
of the forces developed by the two "drive wheels".  
 
The entire control of the mobile robot along 
trajectories is developed by controlling the angular 
velocities of the two drive wheels (Andrea, et al., 
1991). As consequence, there are three fundamental 
cases during mobile robot operation: 

• If the angular velocities are identical, both as 
values and relative senses, the robot make a 
“spin” motion. The spin motion is a rotation of 
the mobile robot body around its vertical axis 
passing through the geometrical symmetry point 
(or centre of gravity). There is a particularity of 
this mechanical configuration, because only the 
two-wheel differential drive mobile robot can do 
this type of motion, very useful to escape outside 
from difficult obstacles. 

 
• If the angular velocities are identical as values 

but opposite as senses, the robot makes a linear 
motion. The direction on the linear motion, 
forward or backwards, depends of the opposite 
group of sense of the driven wheels angular 
velocities. 

 
• If the angular velocities are different as values 

and with the same senses, the robot makes a 
curve motion. Of course, the characteristics of 
the curve motion, i.e. the curvature coefficient k 
of the curve-segment trajectory, depend of the 
differences between the values of the two drive 
wheels. As the difference is smaller, as the curve 
motion tends to a linear motion. 



This mechanical mobile robot solution namely "two-
wheel differential drive mobile robot" is extensively 
used now in practice. The motivations are that this 
structure assures a good balance between large 
capabilities in locomotion (or tracking possibilities) 
and mechanical complexity (or construction costs) 
(Sousa, et al., 1995). In addition, it is the single 
mechanical solutions that can make spin motions and 
so, rugged trajectories can be directly planned. 
 
 

2.  MODELS FOR THE TWO-WHEEL 
DIFFERENTIAL DRIVE MOBILE ROBOT 

 
To characterize the current localization of the mobile 
robot in its operational space of evolution, we must 
define first its position and its orientation. 
 
The position of the mobile robot on a plane surface is 
given by the two dimensional vector , which is 
composed by the Cartesian coordinates of its 
characteristic point P (see Figure 1). This 
characteristic point P is placed in the middle of the 
common axis of the driven wheels. As we can see in 
Figure 1, the orientation (or direction) of the mobile 
robot is given by the angle 

( yx, )

θ  between the instant 
linear velocity of the mobile robot v  (or the  
axis) and the local vertical axis. 
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The instant linear velocity of the mobile robot v  is 
attached and defined relative to the characteristic 
point P. As equation (1) denotes, this mobile robot 
velocity is a result of the linear velocities of the left 
driven wheel Sv  and respectively the right driven 

Dv . These two drive velocities Sv  and Dv  are 
permanently two parallel vectors and, in the same 

time, they are permanently perpendicular on the 
common mechanical axis of these two driven wheels. 
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The next equations (2) and (3) give the two Cartesian 
components of the linear velocity: 
 

                                     (2) θsin⋅==
•

vxvx

                                     (3) θcos⋅==
•

vyvy

 
The position, the orientation and the linear velocities 
of the two driven wheels define the robot state as a 
five elements vector: 
 

             ( )TRL vvyx ,,,, θ            (4) 
 
The input vector contains the two accelerations of the  

left Sa  and respectively the right Da  driven wheels.  
 
Combining equation (1) into equations (2) and (3), 
the next equations (5) and (6) are immediately. They 
give finally the first two state equations (for the 
linear velocity components of the mobile robot): 
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If we note by  the Cartesian positions 
of the driven wheels in the global references attached 
to the operational space, we can write the next two 
equations: 

RRLL yxyx  , , ,

 
           θcos⋅−=− ARL lxx           (7) 

           θsin⋅=− ARL lyy                 (8) 
 
and respectively the associate equations: 
 

                     (9) θθ sin⋅⋅=−
•••

ARL lxx

                  (10) θθ cos⋅⋅=−
•••

ARL lyy
 

Because the vectors for linear speed of wheels Sv  

and Rv  are orthogonal on the common axis of the 
driven wheels (see Figure 1), we can write the third 
state equation (11), representing the angular velocity 
of the robot: 
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The last two state equations denoting the linear 
accelerations of the two drive wheels are evident: 
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Fig. 1. The co-ordinate systems and used notations
for the two-wheel differential drive mobile robot.



             (12) LL av =
•

             (13) RR av =
•

 
The curvature coefficient (k) associated on a specific 
trajectory-segment is a caracteristic parameter which 
is defined as the inverse ratio of the radius of that 
trajectory–segment. The equation for the curvature 
can be obtained because the radius of the trajectory–
segment can be writing as a ratio between the linear 
velocity and the angular velocity of the robot body. 
Therefore, dividing equation (11) by equation (1) we 
obtain finally the equation for the curvature 
coefficient (k) of a segment-trajectory in the form 
included by the equation (14): 
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Because the equations (5) and (6) are nonlinear, we 
must introduce some assumptions to obtain a linear 
model for this category of wheeled mobile robot. 
There are some different solutions which can be used 
in practice. 
 
A possible method is to introduce the hypothesis that 
the two instant drive wheel accelerations of the 
mobile robot,  and respectively , are equals in 

module. If the sign of them is the same, the mobile 
robot executes a linear motion and if the sign is 
opposite, the mobile robot executes a special curve 
namely "clotoide" (Kriegman, et. al., 1987). 
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The most common actuator used to energize the 
locomotion system of the wheeled mobile robots is 
the DC motor. An associated encoder, using as 
position and speed sensor in common, is currently 
attached. In same normal hypothesis (electrical 
constants are smaller those mechanical constants), 
the DC servomotor is a first order system with a 
transfer function: 
 

        ( ) ( )
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K
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==
1

ω
        (15) 

 
were ω  represents the angular speed of the DC 
servomotor and U is the applied voltage. 
 
So, considering two DC servomotors as right (R) and 
left (L) actuators for the two driven wheels of the 
mobile robot and the associated simplest transfer 
function: 
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Fig. 3. The simplified model for the two-wheel differential drive mobile robot, considering the same behavior 
for the two actuators of the locomotion system.
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Fig. 2. A primary model for the two-wheel differential drive mobile robot, considering two DC servo-motors as 
actuators in the locomotion system.



we can obtain, finally, a first cinematic model for the 
two-wheel differential drive mobile robot, which is 
depicted in Figure 2. 
 
If our target is to simplify the mathematical model, 
we can introduce the evident assumption that the two 
DC servomotors are practically identical in their 
behavior. So, in addition, some equalities betweens 
the parameters of their transfer functions (16) and 
(17) can be writing as in the equations (18) and (19) 
depict: 
 
           (18) aRL KKK ==

    TTT RL ==          (19) 
 
Now, using the equation for the linear velocity of the 
two-wheel differential drive mobile robot (1) and the 
equation for the angular velocity (11) of this type of 
mobile robot, we can obtain (after same successive 
bloc-diagram reductions and transformations) a new 
and more simple bloc-diagram (Niţulescu, 1999a), 
which is depicted in Figure 3. 

But this new control diagram is still not satisfactory. 
The explanation is that substantial tracking errors can 
occur between an imposed (or desired) trajectory for 
the two-wheel differential drive mobile robot and the 
real trajectory developed by it. If these errors exceed 
an acceptable and predefined limit, obstacles 
avoidance can occur and the entire functionality of 
the robot is affected. 
 
This is the reasons to introduce two closed loops 
control to limit better the tracking errors during 
mobile robot evolution in its operational space. The 
first one is for the curvatures abscise λ  (or covered 
distance by the robot) and the second is for the robot 
orientation. Each of them uses a classical PID 
controller, depicted by the equation (20) and 
respectively (21). 
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Fig. 4. The position control for the two-wheel differential drive mobile robot. 

Fig. 5. The orientation or direction control for the two-wheel differential drive mobile robot. 
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( )sΛ

where    represents the imposed angular velocity, c
•
θ

θΔ  represents the orientation (or direction) error of 

the mobile robot, cx
•

 represents the imposed linear 

velocity and  
•

Δ x  represents the position error of the 
two-wheel differential drive mobile robot. 
 
 

3. A CONTROL SOLUTION FOR THE 
TWO-WHEEL DIFFERENTIAL DRIVE MOBILE 

ROBOT
 
Figures 4 and 5 present the final solutions proposed 
to control the two-wheel differential drive mobile 
robot. So, Figure 4 presents the closed loop control 
for the position of the two-wheel differential drive 
mobile robot, while Figure 5 includes the closed loop 
control proposed for the position control of this type 
of mobile robot. 
 
 

4. CONTROL STABILITY 
 
To evaluate the stability of the proposed solution for 
the control (Figure 4), we consider only a single 
channel input / output ( )xxd → , while the influence 

of the second channel ( )yyd →  is integrated in the 
perturbation . This solution is depicted in 
Figure 6. 
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A first case is 0≥⋅− IP KTK . Using Nyquist 
criteria, the conclusion is that the stability is assured 
if . If 0>DK IP KTK ⋅=  and , some 
oscillations with constant amplitude are produced.  

0=DK

 
A second case is 0<⋅− IP KTK . In this situation the 
system is stable if the point M0 is placed in the left of 
the point ( )0,1 j−  in the root locus method diagram 
depicted in Figure 7. If the system is stable, the 
residual error is zero for an input as step of position 
or step of velocity and constant for an input as step of 
acceleration.  
 
Concerning the perturbation, the residual error is zero 
for an input as step of position and constant for an 
input as step of velocity. 
 
 

5. CONCLUSION 
 

This paper presents some results regarding cinematic 
models for one kind of mobile robots, namely two-
wheel differential drive mobile robot.  
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Fig. 6. The simplified model of the two-wheel differential drive mobile robot for stability analyzes. 
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Fig. 7. The root locus method diagram for stability analyzes of the two-wheel differential drive mobile robot. 



The closed loop control diagrams for position control 
and respectively for direction control in tracking 
along imposed trajectories are also analyzed. Finally, 
for these control solutions, the paper presents 
therefore some analyses regarding the stability for 
different type of inputs. 
 
This mechanical mobile robot solution namely "two-
wheel differential drive mobile robot" is extensively 
used now in practice. The motivations are that this 
structure assures a good balance between large 
capabilities in locomotion (or tracking possibilities) 
and mechanical complexity (or construction costs) 
(Sousa, et al., 1995). In addition, it is the single 
mechanical solutions that can make spin motions and 
so, rugged trajectories can be directly planned. 
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